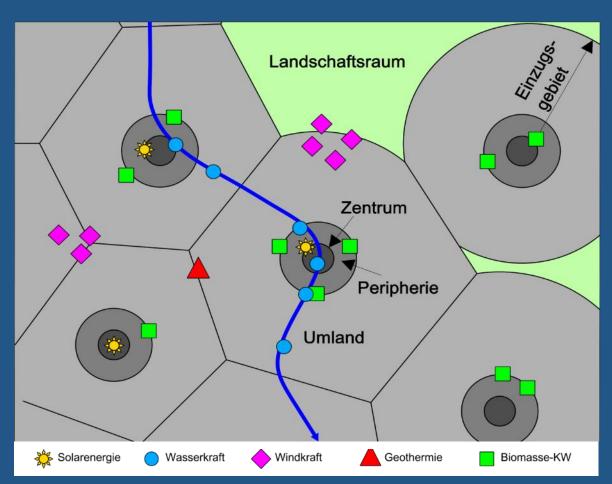
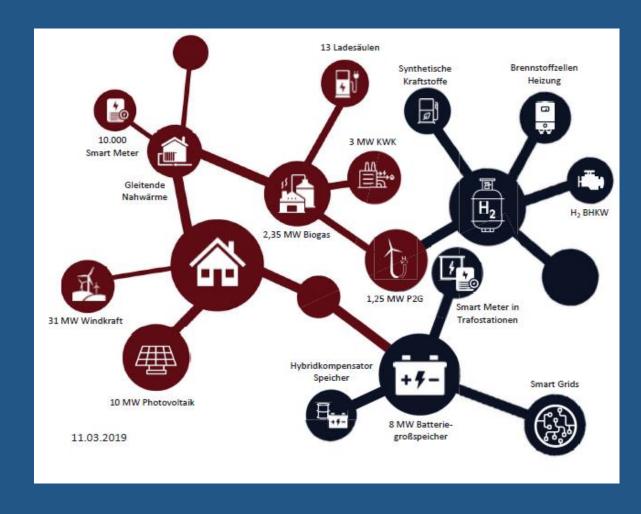


Integrierte Energetische Quartierskonzepte als Einstieg in die lokale Transformation

Dr. Kersten Roselt

Geschäftsführer der JENA-GEOS®-Ingenieurbüro GmbH Vorstand der EnergieWerkStadt® e.G. unternehmerischer Sprecher und Vorstand des smood® e.V.





DIE STADT WIRD ZUM ENERGETISCHEN ORGANISMUS

Vision FH Nordhausen 2007 Realität in Haßfurt 2019

DEZENTRALITÄT: ALTE FEHLER - NEU GEMACHT?

Dr. Kersten Roselt: IEQK als Einstieg in die lokale Transformation | 12.07.222

KONFLIKTPOTENZIAL

Nutzung erneuerb. Energiepotenziale unstete Förderpolitik egoistische Einzelinteressen demografischer Wandel (Schrumpfung)

zunehmender Flächenverbrauch Wertzuwachs Investitionen

2025

Gebäude(-bestand)

keine neuen Verkäufe von mit foss. Brennstoffen betriebenen Heizkesseln

2030

Universeller Zugang zu Energie.
Alle Neubauten sind "zero-carbon ready"

2035

Die meisten verkauf ten Geräte & Kühlanlagen sind die besten ihrer Klasse

2040

Nachrüstung von 50% des Gebäudebestands auf "Zero carbonready"-Niveau

2045

Entwicklung der Treibhausgasemiss

Deckung von 50 % des Wärmebedarfs durch Wärmepumpen

2050

Mehr als 85 % der Gebäude sind "Zero-carbon ready"

kommunale Wärmeplanung, Ausbau der Wärmenetze

flächendeckende

- Ausbau der Erneuerbaren, insbesond.
 Einsatz von Wärmepumpen (bis 6 Mio/2030)
- bessere Anreize für Sanierungen, Sanierungsfahrplan, Umsetzungsqualität, Stärkung von Quartiersansätzen, Sektorkopplung, Nachhaltigkeitsaspekte, nachhaltiges Bauen
- Einsatz grauer Energie, Berücksichtigung Lebenszykluskosten, Einführung des digitalen Gebäuderessourcenpass, Gebäudeförderung mit der kommunalen Wärmeplanung verknüpfen

Nachhaltige Quartiere

- Beitrag zur Umsetzung der Sustainable Development Goals (SDG)
- Verankerung unter anderen in der "Deutschen Nachhaltigkeitsstrategie – Weiterentwicklung 2021"

Inhalte des SDG 11 »Nachhaltige Städte und Gemeinden«

- nachhaltige Nutzung der Flächen
- sichere, bezahlbare und nachhaltige Mobilität
- Senken der Umweltbelastung
- gesicherte Grundversorgung und digitale Anbindung ländlicher Gemeinden
- bezahlbarer Wohnraum

Indikatoren für nachhaltige und integrierte Stadtentwicklung

- Senkung der Inanspruchnahme zusätzlicher Flächen für Siedlungs- und Verkehrszwecke
- Reduzierung des Endenergieverbrauchs im Güter- und Personenverkehr
- Reduzierung des durch Wohnkosten überlasteten Bevölkerungsanteils

GEBÄUDETECHNIK

- > Primärenergiequalität
- > Energieverbrauch
- > Potenzial erneuerbare Energie
- > Energetische Infrastruktur

STADTPLANUNG

- > Baukultur + Ortsbild
- > Erscheinungsbild
- > Bauliche Dichte
- > Nutzungsintensität
- > Diversifikation

MOBILITÄT

- > Öffentlicher Personennahverkehr
- > Straßenverkehrssystem
- > Regionale Verkehrsinfrastruktur

ARCHITEKTUR

- > Sanierungsgrad
- > Heizwärmeverbrauch
- > Nutzung Sanierungspotenzial

ÖKOLOGIE

- > Habitatqualität + Artenvielfalt
- > Zustand lokale Wasservorkommen
- > Zustand Grundwasser
- > Luftqualität

RESSOURCEN

- > Bevölkerungsstruktur + entwicklung
- > Finanzielles Potenzial
- > Identität

Versorgungsgrad STROM

(Gebäude + Freifläche)

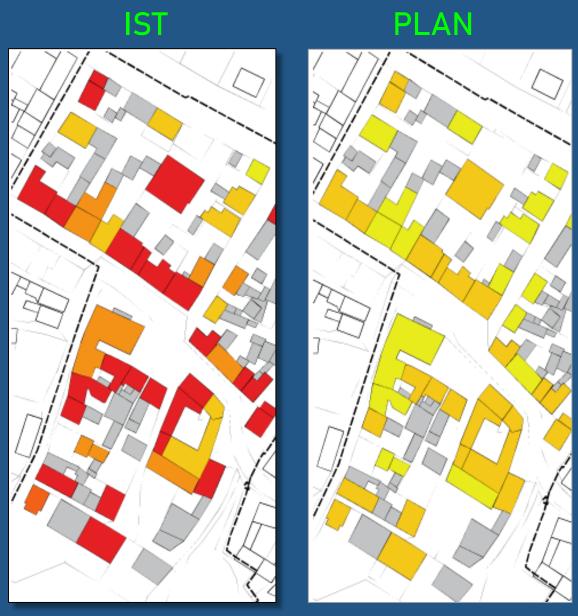
Versorgungsgrad WÄRME

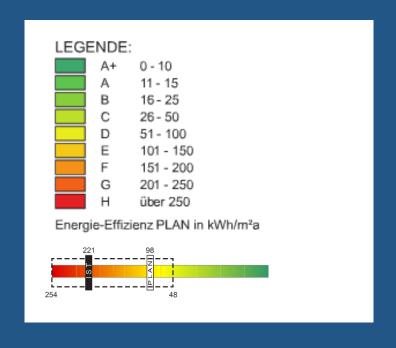
(Gebäude + Freifläche)
SOLARTHERMIE
(Gebäude)

PHOTOVOLTAIK (Gebäude)

PHOTOVOLTAIK (Freifläche)

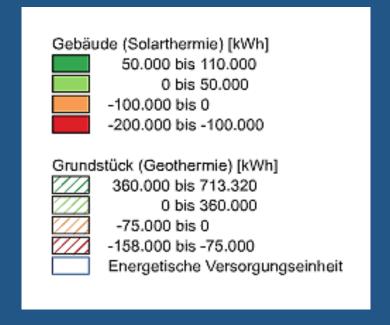
GEOTHERMIE (Freifläche)




GEOTHERMISCHE POTENZIALE

Schweina (Südthüringen)

ENERGIE-EFFIZIENZ



BEISPIEL: DEFIZIT & ÜBERSCHUSS WÄRME

GEBÄUDETECHNIK

- > Primärenergiequalität
- > Energieverbrauch
- > Potenzial erneuerbare Energie
- > Energetische Infrastruktur

STADTPLANUNG

- > Baukultur + Ortsbild
- > Erscheinungsbild
- > Bauliche Dichte
- > Nutzungsintensität
- > Diversifikation

MOBILITÄT

- > Öffentlicher Personennahverkehr
- > Straßenverkehrssystem
- > Regionale Verkehrsinfrastruktur

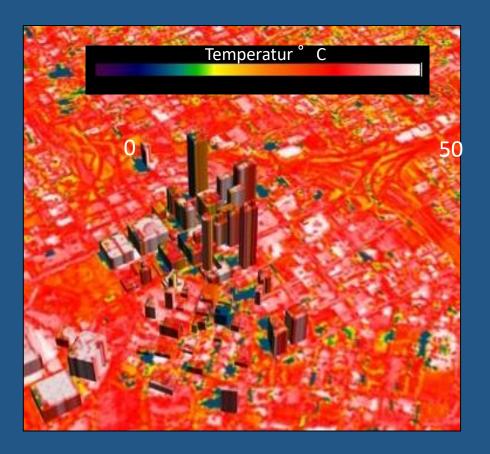
ARCHITEKTUR

- > Sanierungsgrad
- > Heizwärmeverbrauch
- > Nutzung Sanierungspotenzial

ÖKOLOGIE

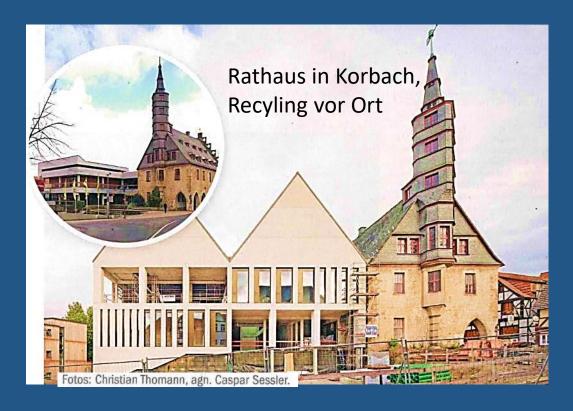
- > Habitatqualität + Artenvielfalt
- > Zustand lokale Wasservorkommen
- > Zustand Grundwasser
- > Luftqualität

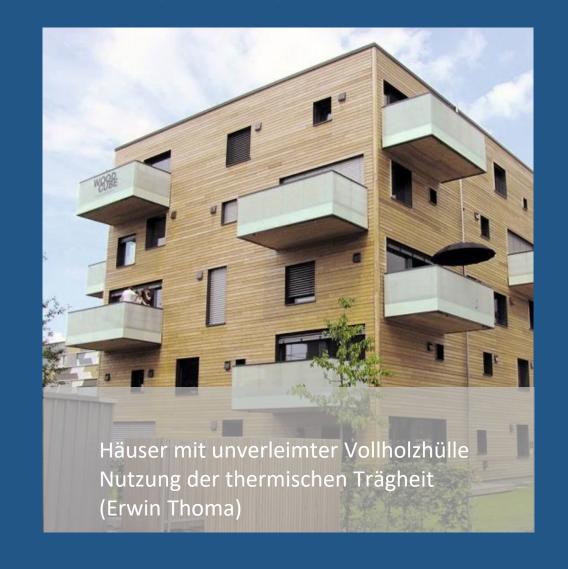
RESSOURCEN


- > Bevölkerungsstruktur + entwicklung
- > Finanzielles Potenzial
- > Identität

INNENVERDICHTUNG VERSUS HITZEINSELN

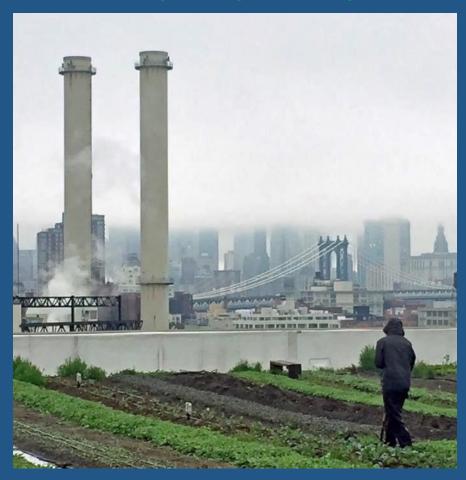
Optimale Bebauungsdichte, Mikroklima-gerecht ausbalancieren


Verdichtung zu einem kompakten Gefüge bewirkt ökonomische Effekte, die dem energetischen Umbau zur Wirtschaftlichkeit verhelfen (BMBF, 2017).


Modellierung zukünftiger Entwicklungen→ Maßnahmeplanung

GESCHLOSSENE KREISLÄUFE

Recyclinggerechtes Bauen & Konstruieren (Circular Engineering), cradle2cradle


Planungspraktiken für die Nutzung von Stadt und Gebäude als Rohstoffdepots mit dem Potential einer positiven Wertentwicklung

REGENWASSERNUTZUNG

& BLAUGRÜNE INFRASTRUKTUR

Ziel: Verringerung der Regenwasserabflüsse in die Entwässerungsanlagen und Gewässer

Urban Gardening auf einem Dach in Brooklyn

Regenwassernutzung Leuphana Uni Lüneburg

NACHHALTIGE MOBILITÄT

Walkability, Barrierefreiheit, Radwegenetz, Ladeinfrastruktur, Parkraum, Sharing, ÖPNV

Dr. Kersten Roselt: IEQK als Einstieg in die lokale Transformation | 12.07.222

ENERGIE WERKSTADE MASTERPLAN & SCHLÜSSELPROJEKTE

ENERGIE

STADTPLANUNG & ARCHITEKTUR

ÖKÖLOGIE

Rückbau der Kaltdächer & Aufstockung der Bestandsgebäude um ein zusätzliches Geschoss zur Nachverdichtung und zur Ausdifferenzierung des Wohnungsangebotes im Quartier

LowEx-Wärmepumpen liefern effiziente Heizwärme auf niedrigem Temperaturniveau und nutzen vorhandenes Wärmenetz zur bedarfsgerechten Verteilung im Quartier

Sonnenstrom: PV-Module auf Parkplatzüberdachung liefern Strom und hochwertige Parkflächen

Urban Greening: Fassadenund Dachbegrünung verbessern Wärmeschutz, Wasserhaushalt und Luftqualität

Revitalisierung von Altlastenflächen für hochwertige Wohn-Neubebauung

Anbau einer zusätzlichen Raumschicht an den Gebäudegiebeln zur Verbesserung des Wohnungsangebotes und zur barrierefreien Erschließung

Carsharing-Angebote & Stellplätze im Bereich des Quartierseinganges

Aufwertung der

Ladengeschäfte,

räumliche Fassung

der Fußgängerachse

Sonnenstrom: PV-Dach-Anlagen oder bei Aufstockung gebäude-integriert

Abriss, Altbebauung und Errichtung eines Neubauensembles zur räumlichen Fassung des Quartierseinganges und Schaffung neuer Nutzungsangebote

> Große Solarthermiefelder an den Stirnseiten liefern Energie für Warmwasserbereitung und die Regeneration der Erdsonden

Fassadenbegrünung zur Verbesserung des Mikroklimas und zur lokalen Lärmreduzierung

Nachbarschaftsgärten als Treffpunkt und Identifikation

Entsiegelung, **Entwicklung von** Grün- und Freiflächen mit Spiel- und Freizeitfunktionen

Ladesäulen für Elektromobilität im Quartier (PKW und E-Bike)

Fassadensanierung, Aufzüge, Laubengänge, Balkone, Loggien, integrierte PV-Module

Geothermie: Nutzung der lokalen geothermischen Potenziale zur regenerativen Wärmeversorgung und Speicherung von solarer Wärme

Schließung der "offenen" Block-Ecken zur weiteren Ausdifferenzierung des Wohnungsangebotes bzw. zur barrierefreien Erschließung

VERÄNDERUNGEN

Bedrohung

Herausforderung

Quelle: Prof. Bolten, FSU

TRANSPARENZ, AKZEPTANZ, BETEILIGUNG

Wichtigster Punkt der Umsetzung

EFFEKTE NACHHALTIGER QUARTIERSENTWICKLUNG

Ergebnisse des systemischen Ansatzes

- Verringerung der Energiebedarfe
- CO₂-Verringerung um:
- EnergieEffizienz verbessern um:
- Selbstversorgung EE:
- Nachhaltigkeitsgrade:
- Demografie, Segregation, ökolog. Qualität

38 - 62 % ¹⁾
40 % ²⁾
30 - 100 % ¹⁾
+ 30 % ¹⁾

Lebensqualität = Standortvorteil

steigende Nachfrage

- ¹⁾ Erfahrungen EnergieWerkStadt e.G.
- ²⁾ dena (2022): Quartierslösung ggü. Einzelgebäude

INTEGRIERTE ENERGETISCHE QUARTIERSKONZEPTE

KfW 432: Förderkumulation, Stand 1.4.2021

- 10 % Eigenanteil oder Übernahme durch Dritte (z.B. EVU)
- 15 % Zuschuss aus KlimaInvest in Thüringen (seit 1.7.'22)

75 % KfW-Zuschuss (KfW 432)

Neu hinzugekommen:

- Naturschutz, Biodiversität, blaugrüne Infrastruktur
- Mobilitär
- Digitalisierung

Anschlussförderung zurUmsetzung des Konzeptes:

Sanierungsmanager, Personalkosten bis 250 T€ / 3 Jahre

FAKTEN

Kloster

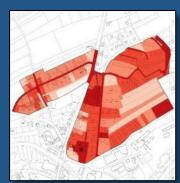
Donndorf

Quartier' von Häusergruppe bis < Stadtteil (Def. KfW)

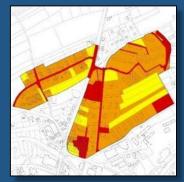
OT Schweina 3.000 EW)

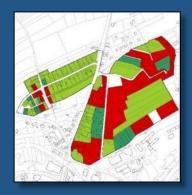
FAKTEN

- Antragstellung an KfW und TAB +/- identisch, unbedingt gleichzeitig!
- wichtig: qualifizierte Vorhabenbeschreibung (15 20 Seiten Text)
- Antragsbewilligung bei KfW: 8 Wochen Dauer, bei TAB ähnlich
- Bearbeitungszeit: 8 12 Monate (auch wg. Bürgerbeteiligung)
- bisher in Deutschland ca. 1.100 Quartierskonzepte in 10 Jahren
- Thüringen liegt noch unter dem bundesweiten Schnitt
- Kosten zwischen 40 und 150 T€
- Inhaltliche Schwerpunkte aktuell Konzepte zu Nahwärmenetzen, Ablösung vom Gas
- IEQK ist mehr als ,nur Energie'



AUSGANGSZUSTAND


- 1. Motivation
- 2. Region. & planerische Einbettun
- 3. Anamnese
 - 3.1 Energie
 - 3.2 Stadtplanung
 - 3.3 Architektur & Denkmalschutz
 - 3.4 Ökologie
 - 3.5 Sozioökonomische Ressourcen
 - 3.6 Mobilität und Verkehr
- 4. Bilanzierung CO₂ & Energie
 - 4.1 Bilanzierung nach Sektoren
 - 4.2 Bilanzierung nach Gebäudetypen
 - 4.3 Bilanzierung nach Primärrohstoff
 - 4.4 Zusammenfassende Bewertung IST-Stand



B KONZEPT

5. Potenziale

- 5.1 Energietechnologien & -effizienz
- 5.2 Sanierungspotenziale
- 5.3 Wählbares Potenzialthema 1
- 5.4 Wählbares Potenzialthema 2
- 5.5 Bewertung der erschließbaren Potenziale

6. Handlungsfelder, Entwicklungsziele und Leitbild

- 6.1 Handlungsfelder
- 6.2 Entwicklungsziele
- 6.3 Leitbild

B KONZEPT

7. Maßnahmen und Umsetzung

- 7.1 Maßnahmenkatalog und Schlüsselprojekte
- 7.2 Handlungsempfehlung und Priorisierung
- 7.3 Umsetzungsfahrplan

8. Information, Beratung, Öffentlichkeitsarbeit

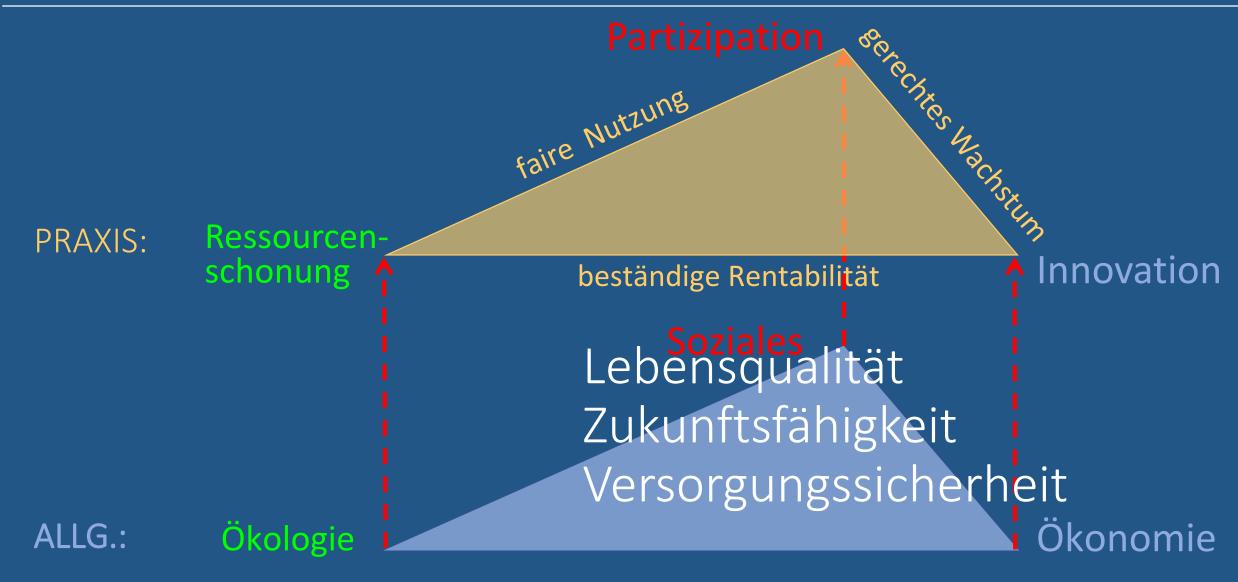
- 8.1 Zielgruppenspezifische Ansprache
- 8.2 Marketing- & Öffentlichkeitsarbeit
- 8.3 Beratungskonzept
- 8.4 Bürgerinformation
- 8.5 Kommunikation im Quartier

9. Durchführungskonzept

- 9.1 Leitplanken der organisatorischen Umsetzung
- 9.2 Nutzung von Förderprogrammen
- 9.3 Controlling-Konzept für die Umsetzungsphase
- 9.4 Gebäudesteckbriefe

- C PM, GIS, DOKUMENTATION KONZEPT
 - 10. Projektmanagement Quartierskonzept
 - 10.1 Behörden- und Bürgerkontakt
 - 10.2 Einbindung aller Akteure

11. GIS


- 11.1 Erstellung & Datenpflege GIS
- 11.2 Abstimmung mit Kommune
- 11.3 Aufbereitung zur Datenübergabe (an die Kommune)

12. Dokumentation

- 12.1 Endfertigung des Quartierskonzeptes
- 12.2 Abschlussdokumentation für Förderbanken (Unterstützung Verwendungsnachweis)

NACHHALTIGKEIT

UNTERNEHMERISCHE KONSEQUENZ

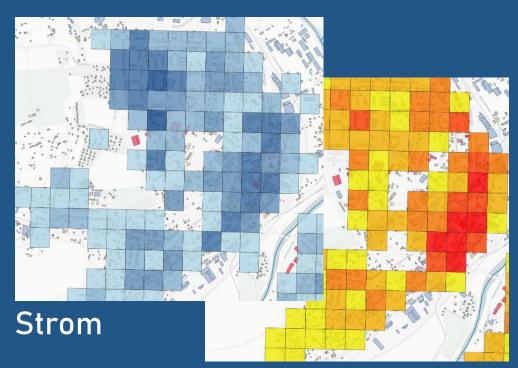
- systemische Ansätze fordern praktische Interdisziplinarität
- Gründung interdisziplinärer Ingenieur-Genossenschaft (2014)

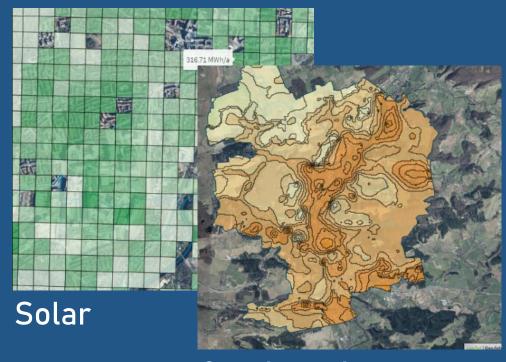
EnergieWerkStadt eG | Saalbahnhofstraße 25c | 07743 Jena | www.energie-werk-stadt.de

,ROLL-OUT' FÜR THÜRINGEN

www.energie-werk-stadt.de/PIQ.html

- Energiewende in Stadt und Land in die Breite bringen
- Starthemmnisse überwinden, Anträge begleiten
- Quartierskonzepte und Entwicklungspläne für zeitnahe UMSETZUNG bereitstellen
- Hilfe bei der Erschließung von Fördermitteln
- Nutzung positiver Erfahrungen aus dem Ruhrgebiet (Partner ICM)





BEDARFE

Wärme

POTENZIALE

Geothermie

www.trail-energy.de: für alle Gemeinden in Thüringen

INITIATIVE ,smood - smart neighborhood'

Regionaler Wachstumskern, gefördert vom BMBF mit 10 Mio € + 4 Mio € Eigenanteil KMU

NEUENTWICKLUNGEN

smoodPLAN

Drohnenbasierte Analyse

Konzept, Optimierung, Evaluation

Quartiers-Informations-Modell (QIM)

smoodHARDWARE

Quartiers-Stromspeicher

Quartiers-Wärmespeicher

Quartiers-Wärmeerschließung

smoodACT

Optimale Steuerung und -Betrieb der Quartiersenergieversorgung

Planung

Umsetzung / Systemintegration

Betrieb

Planung

Detailplanung Hochbau & Technik

Buliding-Information-Modelling (BIM)

Anlagentechnik

Energieerzeugung

Energieverteilung

Energiespeicherung

Betrieb

Gebäudeenergiemanagement

Gebäudeleittechnik

Sensoren

BESTANDSTECHNOLOGIEN

2021 Deutscher Nachhaltigkeits-Award

2021/22 Exponat im Campus Germany WorldExpo Dubai

Vielen Dank!

Dr. Kersten Roselt

Geschäftsführer der JENA-GEOS®-Ingenieurbüro GmbH Vorstand der EnergieWerkStadt® e.G. unternehmerischer Sprecher und Vorstand des smood® e.V.

roselt@jena-geos.de

